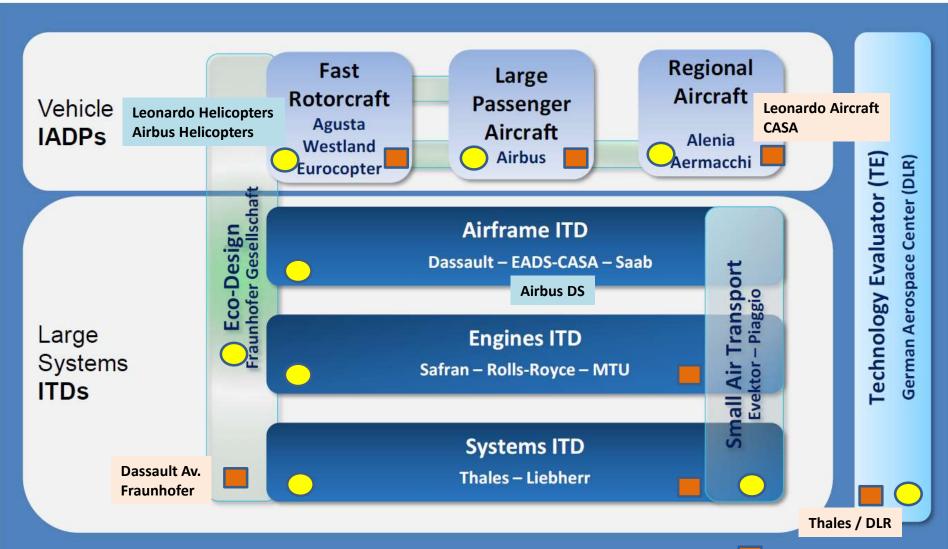
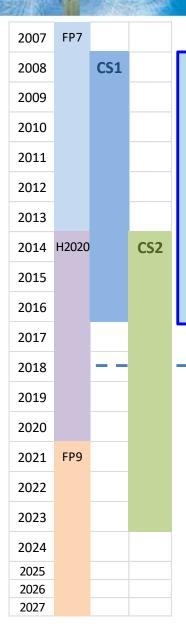


TECHNOLOGYBIZ 2018



Brief intro to Clean Sky programmes


Clean Sky Organisation

Clean Sky – (2008-2016) – 1.6 billion (800 mil from FP7, industry in kind) Clean Sky 2 – (2014-2024) - 4 billion (1755 mil from H2020, industry in kind)

Clean Sky participation

The Clean Sky 1 programme (2008-2016)

funded 696 entities from 26 countries and 105 EU regions with approx. 780 M€

The Clean Sky 2 programme

has funded so far (end 2018)
more than 650 entities from 27 countries
and 110 EU regions
with approx. € 1,05 billion

~ € 700 million funding and 3 calls yet to come

Clean Sky Overview

Clean Sky aims environmental improvement through developing and demonstrating clean aircraft technologies

	Clean Sky 1	Clean Sky 2
N° of Demonstrators	28	37
EU funding in € million	800 (from FP7)	1 755 (from Horizon 2020)
	50% for actions of the Leaders	40% for actions of the Leaders
	25% for actions of the Associates	30% for actions of the Core Partners
	25% for actions for Partners	30% for actions for Partners
Private contribution in € million	600	2 193

50% rate

Call for Proposals 09

9th Call for Proposal at a glance

Call Launch06 Nov 2018

Call Closure 06 Feb 2019

Evaluation PhaseMarch 2019

Q&A last publication*
 1 month before Call Closure

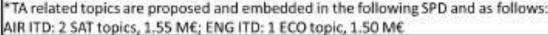
■ Technical sessions & Grant preparation ~Q2 – Q3 2019

■ Indicative Start date of activities ~Q3 2019**

**Indicative start date for Thematic Topics

For Q&A: <u>Info-Call-CFP-2018-02@cleansky.eu</u> (email address only active as from 23/10/2018). Find out more about Call latest news and related Info Days: <u>www.cleansky.eu</u>

^{*}Questions received up until 5th December 2019, 17:00 (Brussels time) will be answered after analysis and published in the Q&A when appropriate. In total, three publications of Q/As are foreseen: 06/11, 22/11, and 19/12/2018 (estimated dates).

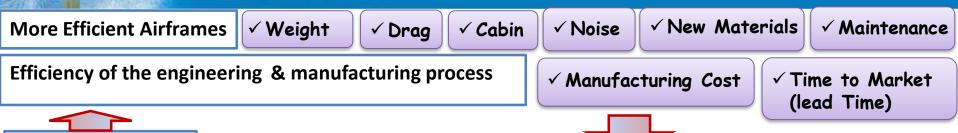

9th Call for Proposal at a glance

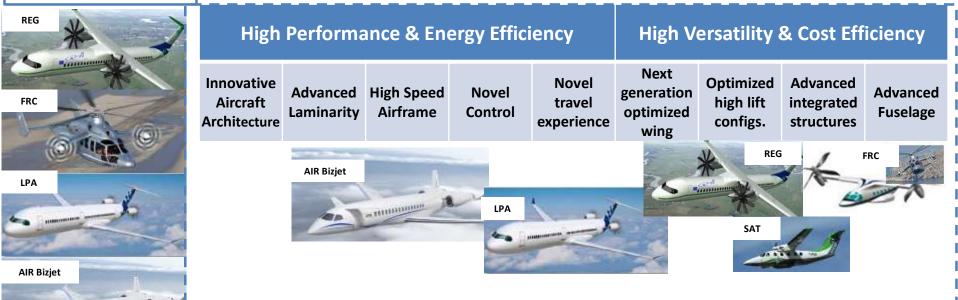
PART A: Call topics launched within the complementary

framework of IADP/ITD/TA

1. Overview of number of topics and total indicative funding value per SPD

No. of topics	Ind. topic Funding (M€)
20	26.50
0	0
3	11.45
11	10.25
4	3.35
10	6.70
[2]	[1.55]
[1]	[1.50]
3	0.85
51	59.10
	20 0 3 11 4 10 [2] [1] 3




AIR Key General Objectives

IADP/Integrated Demonstrators

SAT

SUPPORT TO IADP: Maturate technologies **up to TRL 6**

TRANSVERSE Eco-Design for Airframe & Modeling to certification ability

FUTURE: De-risk novel generation product in the prospect of changing step by 2030+

JTI-CS2-2018-CFP09-AIR: 11 topics

AIRFRAME ITD

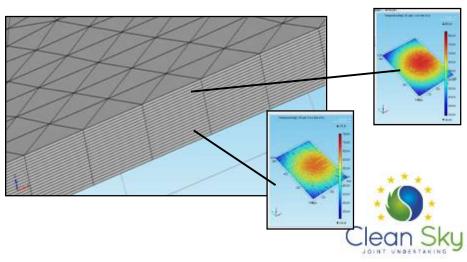
	JTI-CS2-2018-CFP09-AIR- 01-40	Anticontamination Coatings and Cleaning Solutions for Laminar Wings	RIA	2.00	Airbus
		Spring-in prediction capability for large integral	IA	0.75	Israel Aircraft
	02-68	wing structure [SAT]	IA	0.73	Industries
		Biphasic Heat Transport Integration for Efficient	RIA	0.80	Airbus Defence &
	02-69	Heat Exchange within Composite materials		0.00	Space
	02-09	Nacelle			Space
	ITI CS2 2019 CEDOO AIR	Development and application of an innovative	RIA	0.70	Airbus Defence &
	02-70	methodology devoted for high temperature		0.70	Space
•	02-70	characterization of high efficient composite			эрасе
		structures			
	ITI-CS2-2018-CEP09-AIR-	Model Manufacturing and Wind Tunnel Testing of	RIA	0.80	Piaggio Aero
	02-71	High Lift System for SAT Aircraft [SAT]	INIA	0.00	I labbio Acto
		MEMS sensors, wireless and innovative	IA	0.60	Airbus Defence &
	02-72	measurement systems for validation of HVDC		0.00	Space
	02 72	system Structure integration and for new SHMS			Space
		architectures			
	ITI-C\$2-2018-CFP09-ΔIR-	Material modelling platform for generation of	RIA	1.25	Airbus
	02-73	thermoplastic material allowable	INIA	1.23	Allbus
		Development of a multipurpose test rig and	IA	0.70	Fokker Aerostructure
	02-74	validation of an innovative rotorcraft vertical tail	1/2	0.70	TORRET ACTOST detaile
		Design Against Distortion: Part distortion	RIA	0.75	Airbus
	02-75	prediction, design for minimized distortion,		0.73	Allbus
	02-73	additive manufactured polymer aerospace parts			
	ITI-C\$2-2018-CFP09-ΔIR-	Cost analysis software platform for evaluating	RIA	0.40	Imperial College
	02-76	innovative manufacturing technology for SMART		0.40	London
	02-70	fuselage			London
	ITI-C\$2-2018-CFP09-ΔIR-	Calibrating Ultrasonic Sensors for atmospheric	RIA	1.50	Dassault Aviation
	03-06	corrosion.	INIA	1.50	Dassault Aviation
		00110010111			

Napoli - 14 novembre 2018

10.25

AIR-02-70: Development and application of an innovative methodology devoted for high temperature characterization of high efficient composite structures

OBJECTIVES


- ☐ Provide an innovative testing lab environment for:
 - thermal events monitoring by innovative passive filtering techniques applied to termography
 - composite thermal properties characterization by flash method or equivalent
- ☐ Evaluate thermo-mechanical behavior of thermoplastic loaded structures submitted to fire and high temperature air exhausts

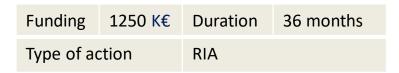
COMPETENCES

- □ R&T management of complex and international projects for aeronautical composite & metalic components
- ☐ Fast track trial and error methodology
- 3D Design SW, Structural Analysis
- ☐ Thermomechanical FEM competences
- ☐ Thermoplastic & thermosetting manufacturing and assembly processes
- ☐ Thermoplastic Raw materials internal development
- ☐ Fast NDI
- Material physic-chemical analysis

Funding	700 K€	Duration	24 months
Type of ac	ction	RIA	

AIR-02-73: Virtual Allowable Platform for thermoplastics

Objectives


- Replace a significant amount of physical tests (material screening/characterisation & certification phases)
- Reduce lead time for material data availability for design (early phases of A/C development)

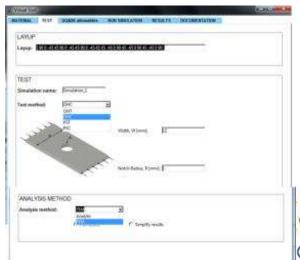
Main activities

- Thermoplastic material test characterization at ply and interface level in order to observe main damage and failure mechanisms
- Creation of a novel thermoplastic material damage and failure model to be implemented in ABAQUS solver
- Parametric coupon models creation for virtual design allowable automated generation (eg. Open hole tension/compression)
- Uncertainty Quantification and Management principles definition for virtual design allowable (B-values)
- Platform/tool encompassing all above activities with a friendly user interface

Competences requested

- Specialist in advanced structural numerical analysis with advanced skills in composite failure modelling.
- Experience with probabilistic methods (e.g. Monte Carlo, Latin Hypercube, Mean Value Method, 1st and 2nd order Reliability Methods, etc.).
- Track-record in having material models selected to be implemented in commercial Finite Element codes.
- Track-record in defining best-practice guidelines for the use of analysis methods at industry level.
- Experience in high strain rate testing of polymer composites using Hopkinson Bars.
- Track-record in manufacturing thermoplastic composites.
- Nadcap and ISO17025 accredited lab to perform experimental characterization of non-metallic materials.

Open-hole coupon

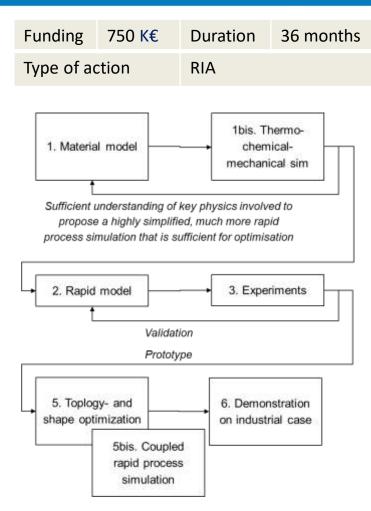


B-values

B-bases (10%)

07451 N

Tool prototype

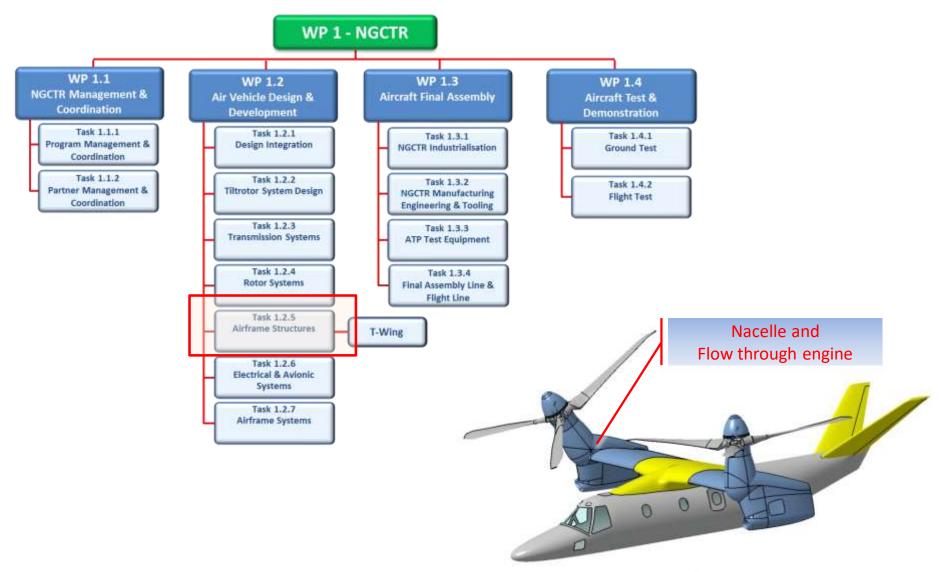

AIR-02-75: Design against Distorsion: Part distorsion prediction, design for minimized distorsion, additive manufactured polymer aerospace parts

Objectives:

- Develop rapid methods to predict material degradation, crystallinity and distortion of additive manufactured PAEK parts, with or without fibre reinforcement;
- Develop methods and tools for topology and shape optimization accounting for distortion;
- Fused Filament Fabircation and ThermoMELT (has certain similarities with Selective Laser Sintering).

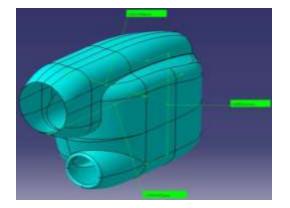
Required:

- Experience with non-linear simulation of polymer transformation processes, such as moulding, welding, selective laser melting: coupled thermal-chemical-mechanical analysis.
- Fused Filament Fabrication machine, capable of building PAEK test articles. Laboratory-type environment: experiment with build strategies, measure shape distortions accurately.
- Experience with topology-, shape- and fibre reinforcement optimisation, the corresponding sensitvity analysis (both for shapeas well as for topology optimization) and prior work on design optimisation algorithms for 3D cases involving process simulation and optimization with uncertainties.


FAST ROTORCRAFT IADP

JTI-CS2-2018-CFP09-FRC-	1.25	Leonardo Helicopters		
01-25	Rotor application			
JTI-CS2-2018-CFP09-FRC-	Design, manufacture and deliver a high	IA	5.20	Leonardo Helicopters
01-26	performance, low cost, low weight Nacelle			
	Structure for Next Generation TiltRotor (NGCTR) -			
	Technology Demonstrator (TD)			
JTI-CS2-2018-CFP09-FRC-	Tilt Rotor Whirl Flutter experimental investigation	RIA	5.00	Leonardo Helicopters
01-27	and assessment			
JTI-CS2-2018-CFP09-FRC: 3 topics			11.45	

JTI-CS2-2018-CFP09-FRC-01-26



JTI-CS2-2018-CFP09-FRC-01-26

The Partner shall work with the IADP Leader and the Core partner responsible for the wing to develop the NGCTR TD Nacelle Structure to be installed on the NGCTR TD for flight test. The selected Partner shall be responsible for:

- Detail design and manufacture of the nacelle tilting structural elements.
- Detail design and manufacture of the nacelle fixed structural elements interfacing with the tilting ones including the interface mechanism(e.g the cowling / fairing support)
- Detail design and manufacture of the nacelle engine bay structural elements(e.g. firewalls, seals, ducts, engine mounts, thermal blankets and engine bay floor.
- Develop and execute plans for design, analysis, manufacture and test as necessary for the elements (fire test; bird strike; structural element; endurance of tilting fairing mechanism; any other tests required) in order to support to LHD for the production of the relevant documentation to achieve a permit to fly for the TD.

Thematic topics

PART B: Thematic Topics

1. Overview of Thematic Topics

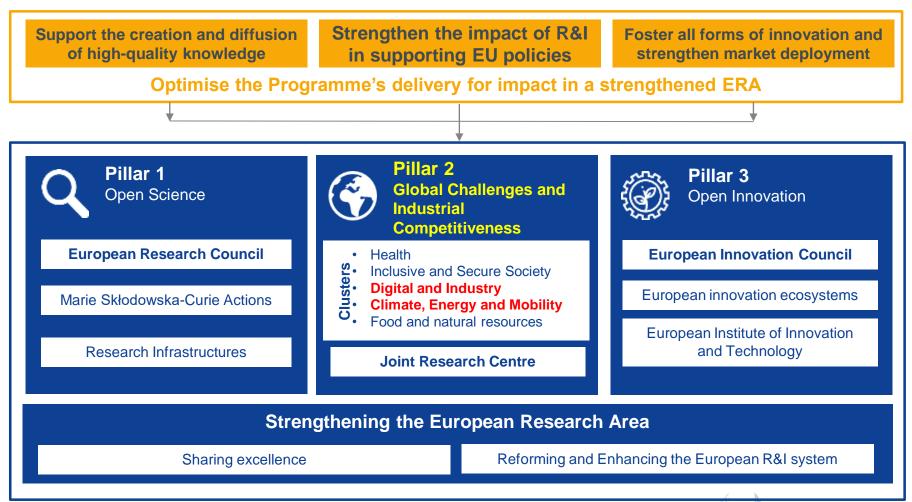
List of Topics for Calls for Proposals (CFP09) - Part B

Identification Code	Title	Type of Action	Value (Funding in M€)
JTI-CS2-2018-CFP09- THT-03	Conceptual Design of a 19 passenger Commuter Aircraft with near zero emissions	RIA	0.75
	Design Optimisation providing optimum performance towards limiting aviation's contribution towards Global Warming	RIA	0.75
	Advanced High Bypass Ratio Low-Speed Composite Fan Design and Validation	RIA	2.00
JTI-CS2-2018-CFP09- THT-06	Research for the development of Particulate Matter (PM) regulations and guidelines	RIA	1.00

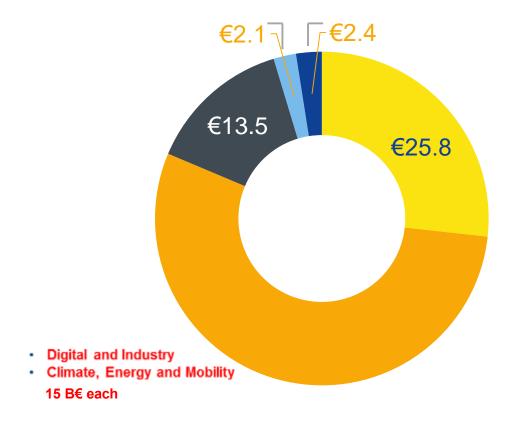
Way forward to next FP

Commission proposal for

Horizon Europe


THE NEXT EU RESEARCH & INNOVATION PROGRAMME (2021 – 2027)

#HorizonEU


Horizon Europe: evolution not revolution

Specific objectives of the Programme

Budget: €100 billion*

* This envelope includes EUR 3.5 billion allocated under the InvestEU Fund.

€ billion In current prices

- Open Science
- Global Challenges & Ind. Competitiveness
- Open Innovation
- Strengthening ERA
- Euratom

Lessons Learned

from Horizon 2020 Interim Evaluation

Support breakthrough innovation

Create more impact through mission-orientation and citizens' involvement

Strengthen <u>international</u> <u>cooperation</u>

Reinforce openness

reduce admin burden
Promote Synergies among different sources

Rationalise the funding landscape /

Key Novelties in Horizon Europe

European Innovation Council

R&I Missions

Extended association possibilities

Open science policy

New approach to Partnerships
/ simpler rules

Final remarks

Clean Sky is considered a successful example of the PPP approach in the EU aeronautics landscape.

CS2 was built on the pioneering experience of CS1.

A potential CS3 needs to adapt to the new indications of Horizon Europe in terms of

- missions,
- synergies
- and content
 - across the clusters of the pillar Global Challenges and industrial competitiveness:
 - Digital and Industry and
 - Climate, Energy and Mobility

Thank You

www.cleansky.eu

